Pattern matching in a model of dendritic spines.
نویسندگان
چکیده
Pattern matching, the ability to recognize and maximally respond to an input pattern that is similar to a previously learned pattern, is an essential step in any learning process. To investigate the properties of pattern matching in biological neurons, and in particular the role of a calcium-dependent potassium conductance, a circuit model of a small area of dendritic membrane with a number of dendritic spines is developed. Circuit model simulations show that dendritic membrane depolarization is greater in response to a previously learned pattern of synaptic inputs than in response to a novel pattern of synaptic inputs. These simulations, in combination with an analysis of the circuit model equations, reveal that when a synaptic input pattern is similar to the learned pattern of synaptic inputs, the total dendritic depolarization is a linear combination of dendritic depolarization contributed by individual spines. When at least one synaptic input differs markedly from the learned value, dendritic depolarization is a nonlinear combination of individual spine depolarizations. These principles of spine interactions are captured in a computationally simple set of 'similarity measure' equations which are shown to reproduce the response surface of the circuit model output. Thus, these similarity measure equations not only describe a biologically plausible model of pattern matching, they also satisfy computational requirements for use in artificial neural networks.
منابع مشابه
Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملAutomated spatio-temporal analysis of dendritic spines and related protein dynamics
Cofilin and other Actin-regulating proteins are essential in regulating the shape of dendritic spines, which are sites of neuronal communications in the brain, and their malfunctions are implicated in neurodegeneration related to aging. The analysis of cofilin motility in dendritic spines using fluorescence video-microscopy may allow for the discovery of its effects on synaptic functions. To da...
متن کاملMorphological Changes in Hippocampal Ca1 Area in Diabetic Rats: A Golgi-impregnation Study
Background and Objective: Although diabetes mellitus is known to be one of the risk factors for dementia but neuropathic changes in the brain of diabetic patients have not been completely revealed. Therefore, this research study was done to evaluate structural changes in pyramidal neurons of hippocampal ...
متن کاملSaltatory waves in the spike-di use-spike model of active dendritic spines
Saltatory waves in the spike-diuse-spike model of active dendritic spines This item was submitted to Loughborough University's Institutional Repository by the/an author. Saltatory waves in the spike-diuse-spike model of active den-dritic spines. Physical Review Letters, 91(2),art. no. 028102 is available online at
متن کاملDendritic branch typing and spine expression patterns in cortical nonpyramidal cells.
To understand the dendritic differentiation in various types of cortical nonpyramidal cells, we analyzed quantitatively their dendritic branching and spine expression. The dendritic internode and interspine interval obeyed exponential distributions with type-specific decay constants. The initial branching pattern, internode interval and spine density at the light microscopic level divided nonpy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Network
دوره 9 1 شماره
صفحات -
تاریخ انتشار 1998